第十一届国际水中机器人大赛

自主视觉组比赛说明及裁判规则

目录

第一章	比赛场地、设备及赛前准备	. 3
1.1	比赛场地	. 3
	1.1.1 场地尺寸	. 3
	1.1.2 检录处位置	. 3
	1.1.3 水深度	. 3
	1.1.4 颜色	. 4
	1.1.5 目标模型	. 4
	1.1.6 拦截绳	. 4
	1.1.7 污染源模型	
	1.1.8 观众及其他	
1.2	参赛设备	
	1.2.1 硬件	
1.3	裁判	
	1.3.1 裁判选择	
	1.3.2 主裁职责	
	1.3.3 副裁职责	
	赛前准备错误! 未定义书签。	
1.5	迟到处罚	
	1.5.1 单项比赛迟到处罚	
1.6	比赛时间	
	1.6.1 时间	
	1.6.2 暂停	
	1.6.3 补时	
1.7	比赛过程	
	1.7.1 赛前准备	
	1.7.2 出发位置	
	1.7.3 出发	
	1.7.4 比赛中断	
然一立	1.7.5 更换机器鱼	
	港口侦查	
	比赛内容	
	比赛时间	
2.3	计分规则	
	2.3.1 得分统计	
松一文	2.3.2 名次	
	浅水污染源搜索	
	比赛内容	
	比赛时间	
3.3	计分规则	
	3.3.1 得分统计	
<i>⁄</i> ⁄⁄ IIII ↔	3.3.2 名次	
	深水污染源搜索	
4.1	比赛内容1	1

4.2	比赛时间	11
4.3	计分规则	12
	4.3.1 得分统计	12
	4.3.2 名次	12
第五章	目标追踪	13
5.1	比赛内容	13
5.2	比赛时间	13
5.3	计分规则	14
	5.3.1 得分统计	14
	5.3.2 名次	14
第六章	目标位置 PH 值检测	15
6.1	比赛内容	15
6.2	比赛时间	16
6.3	计分规则	16
	6.3.1 得分统计	16
	6.3.2 名次	16
第七章	机器鱼创新开发	17
7.1	比赛内容	17
7.2	比赛时间	17
7.3	评分规则	17

2018 国际水中机器人大赛自主视觉组竞赛

国际水中机器人大赛自主视觉组比赛涉及水中机器人避障搜索、图像识别分析、水中运动控制等多方面的内容,比赛形式新颖,观赏性强,有利于激发学生进行科学研究的兴趣,培养学生从事科学实践的能力。

第一章 比赛场地、设备及赛前准备

1.1 比赛场地

本次自主视觉组比赛场地为长方体水池,场地示意图如图 1-1 所示:

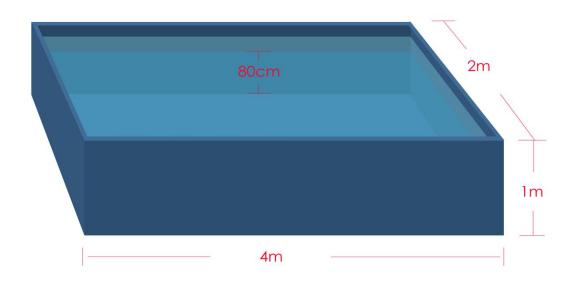


图 1-1: 比赛场地示意图

1.1.1 场地尺寸

水池内部的长方形区域为最终的有效比赛场地,不包括水池壁,有效比赛场地尺寸为 4000mm×2000mm×1000mm(长×宽×高),如图 1-1 所示。比赛场地由组委会统一提供,比赛场地所处的室内尺寸不小于 10000×8000mm,室内地面平整,有充足水源,室内光线良好,有照明、供电设施。

1.1.2 检录处位置

检录处设在比赛场地的旁侧,由大赛组委会专业技术人员统一对参赛器械进行检查。

1.1.3 水深度

水深为 800--1000mm。

1.1.4 颜色

为了确保比赛过程能够观测清楚,特设置较大的色差,池底和池壁为白色,目标小球为紫色,拦截绳为红色和绿色平行放置。

1.1.5 目标模型

目标为直径 200mm 的紫色球,紫色球中注水,使水面刚好没过紫球,紫球模型由组委会统一提供。

1.1.6 拦截绳

拦截绳由直径为50mm 圆管平行组成,该拦截绳平行放置在水中,各条拦截绳所处水深不同,拦截绳之间的间距相同,间距为800mm,拦截绳由组委会统一提供,并由组委会安置拦截绳位置。

1.1.7 污染源模型

污染源模型由直径为 200mm 的紫色小球组成,紫色球表面设置有污染源编号。该目标清晰可见,便于竞赛鱼搜寻。

1.1.8 观众及其他

比赛过程中,场地周围 1 米范围内除裁判外不得有观众或队员围观,且观众与队员需保持安静,不得扰乱比赛场地秩序。除了目标模型、污染源模型、障碍物和参赛机器鱼外,比赛场地中不得放入与比赛无关的任何设施或干扰物。

1.2 参赛设备

1.2.1 硬件

硬件设备为自主视觉机器鱼。

将机器鱼游动方向定义为该鱼体长度,摆动方向定义为宽度,两者垂直方向定义为高度。

鱼体长度: 272mm 鱼体高度: 110mm 鱼体宽度: 181mm 尾鳍长度: 92mm 尾鳍高度: 96mm

尾鳍材料:采用软质硅胶材料,不得用金属材料,以免在比赛中损坏场地。每条机器鱼重量不得超过 3kg;在不受挤压的情况下,机器鱼必须能够放进一个底面半径为 110mm,高为 450mm 的圆筒里面,且保证机器鱼机身安全不受损伤。

1.3 裁判

1.3.1 裁判选择

裁判由大赛组委会工作人员担任,其中主裁1人,副裁2人。主裁负责控制整个比赛,副裁负责一些辅助事务以帮助主裁使比赛顺利进行。

1.3.2 主裁职责

- 1) 赛前宣布比赛规则,检查场地设置,检查参赛方的机器鱼是否符合规定。
- 2) 宣布开始、重新开始比赛、暂停、继续、结束比赛,宣布比赛结果。
- 3)根据比赛规则判断机器鱼是否犯规,并对犯规机器鱼进行处罚。
- 4)记录比赛成绩。
- 5) 比赛开始后,禁止参赛队员远程遥控机器鱼,或者利用设备干扰其他机器鱼竞赛,违者直接判罚输掉比赛,并取消该参赛队伍的比赛资格。
- 6)比赛开始后,禁止参赛队员接触比赛过程中的机器鱼,违者裁判可以进行适当处罚。
- 7)如果比赛中出现机械或其他故障,参赛队伍可以向裁判提出申请,由裁判进行裁决,或中断比赛,或者继续比赛。
- 8) 在比赛期间,裁判享有最终裁定权。如果队员对裁决有争论,给予黄牌警告;如若争论不止,则给予红牌直接取消其比赛资格。
- 9)比赛结束时每队队长必须在计分纸上签字确认。只有在计分出错的情况下,赛后才允许提出复议。
- 10) 当比赛队员在裁判多次催促下仍未开始比赛的,裁判有权利取消该队比赛资格。

1.3.3 副裁职责

- 1)维护比赛秩序。
- 2) 禁止与比赛无关人员进入比赛场地。

1.4 迟到处罚

1.4.1 单项比赛迟到处罚

参赛队伍迟到 5 分钟(不足 5 分钟时以 5 分钟记算),取消冠军争夺资格;迟到 10 分钟,取消冠亚军争夺资格;迟到 10 分钟以上者,此项比赛得分为 0 分;25 分钟后仍未到场的,视为弃权。

1.5 比赛时间

1.5.1 时间

比赛总时间为5分钟。比赛使用一个总计时器。

1.5.2 暂停

比赛中,机器鱼出现机械或其他故障,参赛队伍可以向裁判提出申请,由裁判进行裁决,或暂停比赛,或者继续比赛。暂停时间不得超过5分钟。

1.5.3 补时

比赛过程中, 若由于外在原因而导致比赛中断, 中断的时间结束时由裁判给 出补时时间, 补时时间不得超过 2 分钟。

1.6 比赛过程

1.6.1 赛前准备

为确保机器鱼符合比赛要求,赛前将由赛会的技术委员检查各参赛队的机器 鱼。比赛期间机器鱼若有修改,修改后的机器鱼必须再次接受检查。比赛前公布 比赛赛程,并为每个参赛队伍提供调试的时间。每轮比赛前安排 30 分钟的准备 时间。参赛队伍用移动硬盘或 U 盘保存自己的程序和数据。

1.6.2 出发位置

出发位置位于场地边缘出发区标志点,所有机器鱼必须从出发点出发,机器 鱼鱼尾置于底线上,鱼头指向水池中心,且必须静止不动。

1.6.3 出发

裁判鸣哨开始后,机器鱼由各参赛队员手动启动。在裁判哨声前抢先启动的机器鱼将被警告,二次警告后将被移离比赛场地,并当作违规处理。

1.6.4 比赛中断

如果机器鱼发生碰撞造成故障或发生其他特殊情况时,裁判可以鸣哨中断比赛,但是否继续计时,由裁判决定;裁判鸣哨恢复比赛,机器鱼回到出发区,比赛重新开始。

1.6.5 更换机器鱼

比赛过程中,如果机器鱼出现故障,可以更换机器鱼,更换过程如下:

- 1) 更换方队长向裁判申请更换机器鱼;
- 2) 裁判同意进行更换机器鱼:
- 3) 更换方队长将更换后的机器鱼于出发区重新放置。

更换的机器鱼必须放置在水池中出发区,并且鱼头方向指向水池中心,机器 鱼更换次数不受限制,被换出的机器鱼可以重新参加比赛。机器鱼更换过程中比 赛不暂停。

第二章 港口侦查

我国有长达 3.2 万公里的海岸线,海岸线的安全直接关系到国防安全,为培养参赛同学的海岸线安防意识,增进动手能力和团队协作能力,增强编程设计能力,本大赛特设置港口侦查比赛科目。

2.1 比赛内容

机器鱼在水池中穿越拦截绳,拍摄停靠在港口的紫色模型的全身照。标记始发位置,在穿越拦截绳的过程中,识别到绿色栏杆之后从其下方穿过,识别到红色栏杆之后从其上方穿过,机器鱼不得触碰到拦截绳。拦截绳平行放置在水中,红绿交错放置,拦截绳之间的间距相同,其间距为80cm,且各个拦截绳所处的水深不同,红色拦截绳水深40cm,绿色拦截绳水深20cm,且各个拦截绳所处的水深不同,如图2-1所示:

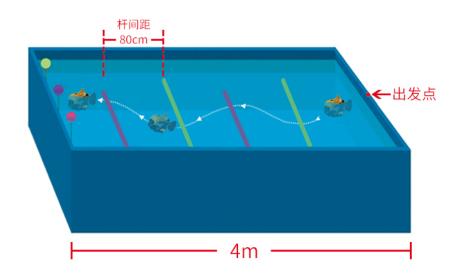


图 2-1 港口侦查比赛示意图

机器鱼抵达对岸,有三个绿色、紫色和红色的小球,分别布置在对岸左侧、中间和右侧的位置。要求机器鱼能够准确识别到中间位置的紫色球模型,照后停于岸边,比赛过程结束。机器鱼全程自主游动,不能人为干预参与控制,每次触碰到拦截绳则扣除一分。

2.2 比赛时间

比赛时间为 5 分钟,比赛只进行一次,过程中参赛选手不得触碰机器鱼。每 支队伍必须在规定时间内完成比赛,时间到则比赛结束。

2.3 计分规则

港口侦查比赛由主裁进行计分,比赛结果由裁判组确认后公布。

- 1) 比赛开始后,由主裁判统计机器鱼穿越拦截绳时触碰拦截绳的次数,并填写到比赛记录单。
- 2) 比赛结束后,由参赛队员将机器鱼所拍摄的港口侦查照片导出,裁判判定其有效性。

2.3.1 得分统计

港口侦查项目共计20分。

- 1) 在比赛正常进行的情况下, 机器鱼穿过全部拦截绳, 得十分;
- 2) 穿越拦截绳并拍摄到港口紫球模型的全身照片,且照片中无拦截绳,得 十分。

注: 在穿越拦截网过程中, 触碰到拦截绳一次减一分。

- 1)参赛成绩分数统计:按照上述记分规则统计分数。若未完成全部环节,则按照完成部分环节得分进行统计。
 - 2) 如果得分相同,则判定完成整个任务所需时间最少的队伍获胜。

第三章 水面污染源搜索

随着海洋开发进度的加快, 航运的规模逐渐增大, 海水污染这一问题越来越受到关注和重视, 海水污染源搜索这一重要问题摆在眼前, 并亟待解决。有鉴于此, 本比赛从大处着眼, 小处入手, 特设置污染源搜索科目, 以培养参赛学生的环保意识和动手协作能力, 编程开发能力。

3.1 比赛内容

机器鱼在水池中按照各参赛队伍设计的搜索策略,通过前置摄像头搜寻污染源。在搜寻到污染源后,需近距离拍照取证,要求照片上可以清晰看到污染源编号。其中紫色球为污染源目标模型,红色球和绿色球为干扰模型,机器鱼的出发位置位于出发岸的标志点,目标球体在水池中的位置固定,不受机器鱼的游动影响。每个目标模型上标有数字编号,如图 3-1 所示:

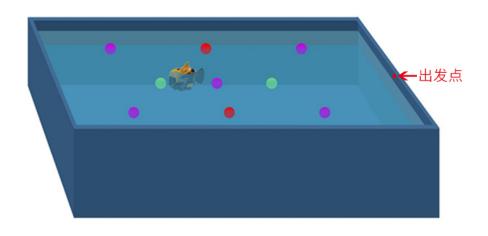


图 3-1 污染源搜索比赛示意图

3.2 比赛时间

每支队伍必须在规定时间内完成比赛,时间到则比赛结束。比赛时间为5分钟,比赛只进行一次,过程中参赛选手不得触碰机器鱼。

3.3 计分规则

污染源搜索比赛由主裁进行计分,比赛结果由裁判组确认后公布。

- 1) 比赛开始后,由主裁判统计机器鱼搜寻到污染源的次数,并将其填写到比赛记录单。
- 2) 比赛结束后,由参赛队员将机器鱼所拍摄的污染源照片导出,裁判判定其有效性。

3.3.1 得分统计

机器鱼在水池中通过相机自主识别搜索污染源,每搜索到一个污染源,拍得完整目标照片,并能清晰显示数字编号得2分,拍到绿色球模型不得分,若拍到干扰源模型(红色球模型),则扣除1分。(同一个污染源照片不可重复累加得分)。

- 1)参赛成绩分数统计:按照上述记分规则统计分数。若未完成全部环节,则按照完成部分环节得分进行统计。
 - 2) 如果得分相同,则判定完成整个任务所需时间最少的队伍获胜。

第四章 水中污染源搜索

随着海洋开发进度的加快, 航运的规模逐渐增大, 海水污染这一问题越来越受到关注和重视, 海水污染源搜索这一重要问题摆在眼前, 并亟待解决。有鉴于此, 本比赛从大处着眼, 小处入手, 特设置污染源搜索科目, 以培养参赛学生的环保意识和动手协作能力, 编程开发能力。

4.1 比赛内容

机器鱼在水池中按照各参赛队伍设计的搜索策略,通过前置摄像头搜寻污染源。在搜寻到污染源后,需近距离拍照取证,要求照片上可以清晰看到污染源编号。其中紫色球为污染源目标模型,红色球和绿色球为干扰模型,所有水球均在水平面 20cm 以下;机器鱼的出发位置位于出发岸的标志点,目标球体在水池中的位置固定,不受机器鱼的游动影响。每个目标模型上标有数字编号,如图 4-1 所示:

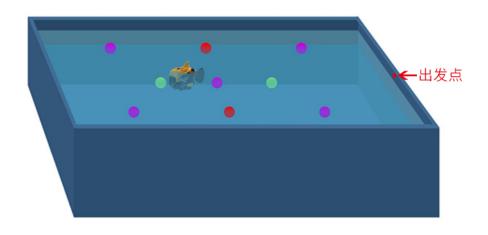


图 4-1 污染源搜索比赛示意图

4.2 比赛时间

每支队伍必须在规定时间内完成比赛,时间到则比赛结束。比赛时间为5分钟,比赛只进行一次,过程中参赛选手不得触碰机器鱼。

4.3 计分规则

污染源搜索比赛由主裁进行计分,比赛结果由裁判组确认后公布。

- 1) 比赛开始后,由主裁判统计机器鱼搜寻到污染源的次数,并将其填写到比赛记录单。
- 2) 比赛结束后,由参赛队员将机器鱼所拍摄的污染源照片导出,裁判判定其有效性。

4.3.1 得分统计

机器鱼在水池中通过相机自主识别搜索污染源,每搜索到一个污染源,拍得完整目标照片,并能清晰显示数字编号得2分,拍到绿色球模型不得分,若拍到干扰源模型(红色球模型),则扣除1分。(同一个污染源照片不可重复累加得分)。

- 1)参赛成绩分数统计:按照上述记分规则统计分数。若未完成全部环节,则按照完成部分环节得分进行统计。
 - 2) 如果得分相同,则判定完成整个任务所需时间最少的队伍获胜。

第五章 目标追踪

随着潜艇和各类海洋装备的发展,海洋中存在的人工巡游设备越来越多,尤其是在军事侦查领域。我国的海岸线广阔,拥有多达 500 万平方公里的领海面积,海洋安全问题日益突出。目标探测及自动跟踪技术可应用到反侦查领域,因此设置目标跟踪科目,通过前置摄像头锁定目标物体,并自动跟踪移动目标,培养参赛学生的动手和动脑能力,以及编程开发能力。

5.1 比赛内容

参赛队各派一条机器鱼按照抽签顺序参加比赛,水池中设置椭圆形赛道,转弯半径 90cm,赛道宽 40cm,两侧由隔板组成。在水面以上安装有环形跑道,由陆地机器人拖拽目标紫色球,沿着轨道以 5cm/s 的速度匀速移动,从起点开始逆时针游动,回到出发点结束,绕椭圆形赛道跟踪目标物游动一周比赛结束。要求机器鱼能够始终跟随目标游动,不能跟丢目标。

如图 5-1 所示:

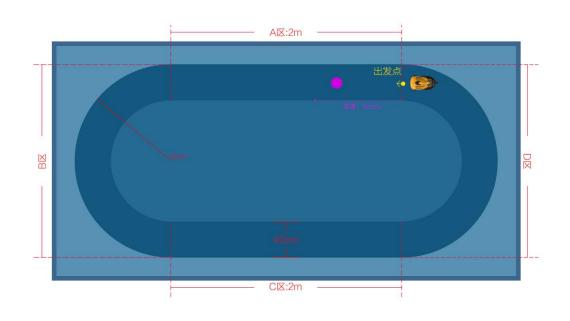


图 5-1: 目标追踪

5.2 比赛时间

每支队伍必须在规定时间内完成比赛,时间到则比赛结束。比赛时间为 5 分钟,过程中参赛选手不得用手触碰机器鱼改变其运动轨迹,不能用遥控器参与机器鱼的控制。

5.3 计分规则

路程全程分为 A、B、C、D 四段,其中,完成 A 区赛道得 10 分,完成 B 区赛道得 20 分,完成 C 区赛道得 10 分,完成 D 区赛道得 20 分,未完成某一段赛道则该赛道按 0 分计,在规定时间内游完全程共计 60 分。

5.3.1 得分统计

- 1) 游动过程中,机器鱼触碰到两侧隔板一次扣1分;
- 2)游动过程中,若机器鱼持续贴近墙壁游动则认定为无法跟踪目标,由裁判判定重赛。每只参赛队伍有两次重赛机会。

- 1)参赛成绩分数统计:按照上述记分规则统计分数。若未完成全部环节,则按照完成部分环节得分进行统计。
 - 2) 如果得分相同,则判定完成整个任务所需时间最少的队伍获胜。

第六章 目标位置 PH 值检测

随着海洋开发进度的加快,航运的规模逐渐增大,海水污染这一问题越来越受到关注和重视,水质污染物浓度检测这一重要问题摆在眼前,并亟待解决。有鉴于此,本比赛从大处着眼,小处入手,特设置水质污染物浓度检测科目,以培养参赛学生的环保意识和动手协作能力,编程开发能力。

6.1 比赛内容

机器鱼在水池中按照各参赛队伍设计的搜索策略,定义紫色目标球为水质检测所在位置,其他颜色球为干扰物;通过自身搭载的摄像头,识别到紫色目标物之后,进行拍照取证;随后,通过自身搭载的水质 PH 检测传感器,检测该位置的水质 PH 值。其中, PH 值检测传感器,通过机器鱼的外设航插接入机器鱼控制系统,并通过 wifi 通信,可将所检测的 PH 值上传到上位机;在上位机控制界面,显示出所检测的 PH 值;

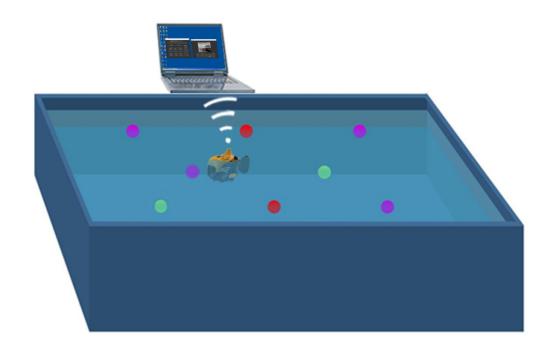


图 6-1 水质检测比赛示意图

6.2 比赛时间

每支队伍必须在规定时间内完成比赛,时间到则比赛结束。比赛时间为5分钟,比赛只进行一次,过程中参赛选手不得触碰机器鱼。

6.3 计分规则

由主裁进行计分, 比赛结果由裁判组确认后公布。

- 1) 比赛开始后,由主裁判统计机器鱼搜寻到污染源的次数,并将其填写到比赛记录单。
- 2) 比赛结束后,由参赛队员将机器鱼所拍摄的污染源照片导出,裁判判定其有效性。

6.3.1 得分统计

机器鱼在水池中通过相机自主识别搜索污染源,搜索到目标污染源之后,拍得完整目标照片,并能清晰显示数字编号得 10 分,拍到绿色球模型不得分,若拍到干扰源模型(红色球模型),则扣除 5 分。(同一个污染源照片不可重复累加得分)。

拍照完毕之后,在该位置进行 PH 值浓度检测,将检测 PH 值发送给上位机,上位机实时显示,得 10 分;

- 1)参赛成绩分数统计:按照上述记分规则统计分数。若未完成全部环节,则按照完成部分环节得分进行统计。
 - 2) 如果得分相同,则判定完成整个任务所需时间最少的队伍获胜。

第七章 机器鱼创新开发

为了鼓励同学们创新思维,激发创意灵感,培养大学生的实践能力和创新精神,发掘和培育创新型人才。设立机器鱼创新开发比赛科目,不设置具体比赛要求。学生可通过外部改装机器鱼,自由设计参赛方案。

7.1 比赛内容

参赛队各派一条机器鱼按照抽签顺序参加比赛。通过机器鱼上预留的防水航插接口,搭载自主选配的传感器或其他功能模块,完成自己设计的比赛计划,可在水池中自己搭建比赛场地(不得放置有损水池的物品,如尖锐金属等,以免划伤水池,造成水池漏水)。

7.2 比赛时间

每项比赛都有时间限制,每支队伍必须在规定时间内完成比赛,时间到则比赛结束。比赛时间为5分钟,比赛只进行一次,过程中参赛选手不得触碰机器鱼。

7.3 评分规则

机器鱼创新开发比赛科目由大赛评委会成员打分,满分100分。

项目	细目	分数
创意	1、创意新颖,有特色	25
目标	1、目标明确,切合主题 2、问题带有社会性和典型性,解决方案有可 行性	20
工作量	1、工作量适当,由学生独自或团队合作完成	20
设计制作	1、作品结构合理巧妙,制作精良,能验证创 意的可行性	15
现场展示	1、现场操作娴熟,机器人演示过程完整 2、展板内容完整,板式富有创意,视觉效果 好 3、陈述清晰,问辩回答准确,能反映对创意 的深入理解	10
团队协作	1、团队分工明确,各司其职,团队协作 2、项目成果由团队集体协作完成	10